Internet Appendix for Semi-strong Factors in Asset Returns

Gregory Connor* Robert A. Korajczyk |

July 1, 2022

Abstract

This is the internet appendix for "Semi-strong Factors in Asset Returns" - Journal of Fi-

nancial Econometrics.

*School of Business, Maynooth University, Maynooth, Ireland. E-mail: gregory.connor@mu.ie.
TKellogg School of Management, Northwestern University, 2211 Campus Drive, Evanston, IL, 60208 USA. Tel:

1-847-491-8336: E-mail: r-korajczyk@kellogg.northwestern.edu.



1 A.1l: Derivation of the estimation variance of bias-adjusted squared

estimated beta

We now derive the expression for the estimation variance of the adjusted squared beta estimator

for a given i, that is:

Var[(gij) — Mmooz | = E[(Byj + ngt&t - Zzptﬁ'gltgw (A1)

t=17=1

in the special case where the idiosyncratic returns are cross-sectionally independent. Expanding

out the left hand side of (A1) into its components:

Var[(ﬁij)2 Mo;0 ] Var[( )2] + (WQj)ZVar[Ei] — 2m2]‘00’0[(§ )2 A2] (A2)

We compute each of the three components on the right-hand side of (A2) separately, beginning

with the first. Note that:
Varl(By)?] = E[((By)* — o2, — B)]. (A3)
Expressing (Eij)Z using (Al) :
(Bij)? = B} + 2BZ]ijtelt + sz]tmﬁeus” (A4)

t=171=1

Inserting (A4) into the right-hand side of (A3) gives:

E[((B’LJ) — Ma;j0, B2 = 2B2J2mﬁ€zt + sz]tm]T&tE” me;o 2 )2] (A5)
t=171=1



Expanding out the square on the right-hand side of (A5) gives three square terms and three cross

terms:

T T T
E[(2B;; e i it Err — Tl 2)2]
ij mitEit MjtMjr&it€ir — 250,
t=1

t=17=1
T T
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= 4Bz’j§ E MM jrEitEir + (AG)
t=17=1
T T T T

ZZZZmﬁijmjsijEitEiT&s&‘u + (A7)

t=17=1s=1lu=1

(mQjagi)Q + (A8)
T T T
4BijZzzmjtmjfmjsfit5i75is - (A9)
t=117=1s=1
T
ABijM2;02, > mijseir — (A10)
=1
T T
2m2(7§i22mﬁmﬁeit5i7. (All)
t=171=1

We will consider each of the six additive components above in order. For (A6), all the cross -terms

Eleitcir], t # 7 have expectation of zero and all the pure terms E[%] have expectation crgi, giving
T T
E[4B3j22m]~tmﬁsit€”] = 4Bz2jm2j02i.
t=17=1
For (A7), there is one pure term where all four time indices are equal and three cross-product terms
where two pairs of time indices are equal:
T T T T
E[ZZZijtijmjsmjugitgiTgisfiu] = m4jE[€;1] + 3m22j (Ugi)z.
t=117=1s=1lu=1
(AR) is in a simple form already. For (A9), the only nonzero expectation is the pure sum when all
three time indices are equal:
T T T

E[4Bz’jZzzmjtmjrmjsgitghfis] = 4B;ms; E[<}].
t=11=1s=1



Term (A10) has expectation zero. For (Al1):
T T
E[Qmmagizzmg‘tmﬁ&t&w] = 2(Mg;02)>.
t=17=1

Adding together the components:

Var((Bij)?] = 4BYmg;ol, +myyElel] + 3 (02)? + (Majo?)? +
AB;jms; E[e}] — 2(mg;0?,)?

= 4y B}0?, + ABims; E[e}] + My E[e]] + (3Maz; — (Ma;)?)(02,)%. (A12)

T T
Next we derive the second term of (A2). Recall that 831_ = > > preacir. Taking the expecta-

tion of the square minus the squared expectation:
T T T T
VCL’I“ Zzzzphpsugztgwswszu] - ( 2i)2’
t=11=1s=1u=1
and using that &;; is independent across time with zero mean:

T T
= Z ¢)2(ZZZP%T + pitprr) — (Ugi)2

t=1T1#t
= DoEfe f‘] +((px p) = 1)(02)? (A13)

The last term in (A2) involves the covariance between (Eij)Q and Egi. Taking the product of

their de-meaned values:

COU[(E )2 A2 Zzptrgztgw - 2szzmjt51t + szjtijgltEZT ] <A14)

t=17=1 t=17=1



Expanding out the four terms in (A14):

T T T
= QBijE[ZZZptfmjsgitgiTSis]+
t=11=1s=1
T T T T

ED D D premjsmjusacireistil
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2 § : 2 § :2 :
—U€i2Bi]’E[ mjteit] — UsiE[ mjtmj-,-é‘ité‘if].

t=1 t=17=1

and then using the ¢;; is independent through time with zero mean:

= 2B;;Ele; Zpttmgt+E Zpttm

t=1
T T
O¢, QZZ 2permjemjr +pttm ops 2Zm
t=171#t
= 2B;;pm;E[e}] + pmy, Ele] + ((p x m) —m2g‘)(0§i)2- (A15)

Now we collect the terms from (A12), (A13), and (A15) and combine them into (A1), multiplying
(A13) terms by (ma;)? and (A15) terms by —2my;, giving:
Var((By)? - mjo2] =
4m2jBi2jO'gi + 4B¢jm3jE[€?] +m4jE[€;~1] + (3m22j — (mgj)Q)(O'gi)z
+(m2;) (P2 Elei] + ((p  p) = 1)(02,)?)

— 2715 (2Byipm; B[e]] + Py, Ele] + ((p x m) — iz ) (02,)7)).



Sorting by the moments and simplifying, this becomes:

Var((Bij)? —mg;62] = c15j02, + cai Ble}] + cs; Eled] + caj(02,)”
crij = AmyB
Coij = A4Bijmy; — 4ma; By (pm;)
c3j = g+ (Mg;)*Py — 2, (pmiy;)
caj = 3Mmag; + (ng)Q(p X p) — 2Mma;(p x m).

2 A.2: Application of the Central Limit Theorem to the bias-

adjusted mean-squared beta statistic

In this section of the appendix we show that the assumptions made in the text justify the central
limit theorem for the bias-adjusted mean-squared beta statistic, 553' , which we call herein the chi
statistic. We use the version of the central limit statistic due to White and Domowitz; see also
White (1984).

The chi statistic is an average of error-adjusted squared estimated betas (equation (15) in the
paper). In order for the central limit theorem to apply to this average (for a given j = 1,k) we
need to confirm three conditions (see White (1984, p. 124)):

Condition 1: Let a(m) denote the strong mixing process for (equation (15) in the paper), then
a(m) must be of size r/(r — 1) for some r > 1.

Condition 2: EH(EU)2 - m2j8§i|2’“] < A for some fixed finite A for all ¢ using the r from
Condition 1.

Condition 3: Assumption 6 (n times the estimation variance converges to a constant) must



hold.

For Condition 1, note that we have assumed (by Assumption 4) that the mixing process for ¢;
obeys a(m) = 0 for all m > m*. The ith term in the sequence of random variables (equation (15)
in the paper) is a nonstochastic function of the T'—vector of realizations {e;;};—1,7 and therefore
inherits the property a*(m) = 0 for all m > m* since nonstochastic functions of independent
random variables are independent. This implies that (equation (15) in the paper) is a strong

mixing process of size r/(r — 1) for any » > 1. We choose r = 1 +% where § comes from Assumption

5.
For Condition 2, consider the 2rth absolute moment of (equation (15) in the paper) with
r=1+4 g :
T T
EHBZZJ + (ZQBijmthit + Z(m]‘tij — ptT)Eit&?iT)‘Q—i_(s]. (Alﬁ)
t=1 =1

Note that (A16) is a constant (over i) polynomial function of B;; and the T'—vector {e }1—1 7.
It is easy to see that this expression has bounded absolute moments, for all finite-order moments.
For simplicity we can use A in Condition 2 derived from its maximum possible value within the

compact support of B;; and {ej }i—1,7:

T T
A > argmax |sz + (Z2Bijmt5it + Z(mtmr - pt7)€it€ir)‘2+6-
Bij{eit}e=1,7 =1 =1

which completes the sufficient conditions for the central limit theorem.

In our Assumption 6 we assume directly that n times the estimation variance of the chi statistic
converges to a finite value. Now we consider the special case of independently distributed &;,
implying a strict rather than approximate factor model, and give explicit conditions on cross-
sectional average moments guaranteeing Assumption 6. We also derive the exact expression for 1;

in this case.



Independence of ¢; implies independence of (Eij)Q — mgﬁgi so that the variance of the cross-

sectional average X is % times the average of the variances:
Var[x;] = 2 ZVCLT’ mgjai} (A17)
Multiplying both sides of (A17) by n and using the expression for Var[(gij)z - mgﬁgz
nVar[x;] = chzﬂ + c2i; Ble]] + ey Elei] + caj(0%).

Using the expressions for c1;5, c2i, ¢35, c4j from above, the convergence of nV ar[y;] follows from the

convergence of the following cross-sectionally averaged moments:

n

.1
lim fE B2 z
=

: 3
ilinoog'ZBijE[Ei]

,L@MZE

Given that these four limiting expressions converge to finite values, it follows that the asymptotic

variance v, also has a finite convergent value:

TS
1/Jj = nILrI;O Ezclijagi + CgijE[E?] + ngE[E?] + C4j(0’§i)2.
=1

A.3: Discussion of the Bootstrap Estimation of the Chi Statistic’s Estimation Variance
This section of the appendix discusses the application of random-case bootstrapping to our
model. We use the technique to estimate the variance of our chi-statistic ((equation (19) in the
paper)).
We have derived an exact formula for the variance of the chi-statistic under a strict factor model

assumption, but it is a function of the third and fourth moments of asset-specific returns, which



are difficult to estimate consistently from time-series regression residuals, and also this formula
does not apply to case of an approximate factor model. The boostrapping approach to estimating
var[ij] is natural in this context. Bootstrapping uses the full available sample to estimate this
variance directly from the sample data. To implement this estimator we act as if the time series
i.i..d. multivariate probability distribution generating returns and factors consists of an n+ k-vector

process, s, which has T discrete possible realizations

sy = [vec|R;], vec|F}]].

The discrete set of potential state realizations for s; are assumed equal to our observed sample
values, and each of these T' random states is assumed to have equal probability % This is fully
consistent with all of our factor model assumptions on returns.

Within the context of this discretized probability distribution we can derive the exact variance
of the chi-statistic. We note that the chi-statistic is a function of a sample of T' random realizations

of the state process:
y] = f(Sla "'7ST)

where s1, ..., s are independently and identically distributed realizations, and the formula for f(-)
is the estimation formula for Qj. Using the discretized probability distribution, the exact variance
of X, is:

varlR,] = %Zf(sl, 51 = (g S F 1, 57))° (A18)
ST ST

where the averages run across the set of all T'—tuples sy, ..., sp. Computing (A18) is straightforward
but impractical since with 7" = 1200 (roughly our sample size) there are 1200'2%° terms in the

averages. However the averages are easily and closely approximated by simply averaging over a



large number of random draws of (si, ..., s7); we use 50,000 draws in each subperiod.

Section A.4: Monte Carlo Simulation: Failure of standard factor estimation meth-

ods in recovering semi-strong factors

Figure A.1 plots the R? values for the regression of the estimated factors on the true factors
(equation (11) in the paper). The blue curve is for the first estimated factor and the orange curve
is for the second estimated factor. The Figure shows how the R? values change as we change
a, p, T,n,o. holding the other parameters at the base-case values used for Table 1 (o = 0.45,p =

0.0,7 = 1250,n = 3000, 0. = 0.35).

Section A.5: Monte Carlo simulation of the test statistic, equation (equation (21)
in the paper)
Figure A.2 plots the empirical cumulative distribution of the test statistic X° in equation (21),

across 50000 simulations, along with the standard normal CDF.
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Figure A.1: R? of Estimated factors 1 (blue curve) and 2 (orange curve) on true factors. Each panel varies
one parameter while holding the others at the base case: a=0.45, p=0.0, T=1250, n=3000, 0.=0.35.
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Panel A — R? of Estimated factors 1 (blue curve) and 2 (orange curve) on true factors. p=0.0, T=1250, n=3000, 0.=0.35.
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Panel B — R? of Estimated factors 1 (blue curve) and 2 (orange curve) on true factors. a=0.45, T=1250, n=3000, 0.=0.35.
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Panel C — R? of Estimated factors 1 (blue curve) and 2 (orange curve) on true factors. a=0.45, p=0.0, n=3000, 6.=0.35.
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Figure A.2: Plot of standard normal distribution and the empirical distribution of standardized sum of
X=X
squared betas, ¥¥= %, for factorsj=1, 2, ..., 10 across 50,000 simulations.
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